This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK


## Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title $\sim$ content=t713455674

## Syntheses and structures of two new uranyl complexes

$\left[\mathrm{UO}_{2}(\mathrm{DPDPU})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right)$ and
$\left[\mathrm{OO}_{2}\left(\mathrm{PMBP}_{2}\right)_{2}\left(\mathrm{DPDPU}^{2}\right)\left(\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{5}\right.$
Li-Ming Zhu ${ }^{\text {a }}$; Shou-Wu Wang ${ }^{\text {ab }}$; Bao-Long Li ${ }^{\text {ab }}$; Jian-Rong Jina ${ }^{\text {ab }}$; Yong Zhang ${ }^{\text {a }}$ ${ }^{\text {a }}$ College of Chemistry and Chemical Engineering, Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou University, Suzhou 215123, P.R. China ${ }^{\text {b }}$ State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P.R. China

To cite this Article Zhu, Li-Ming, Wang, Shou-Wu , Li, Bao-Long, Jin, Jian-Rong and Zhang, Yong(2006) 'Syntheses and structures of two new uranyl complexes $\left[\mathrm{UO}_{2}(\mathrm{DPDPU})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right)$ and $\left[\mathrm{UO}_{2}(\mathrm{PMBP})_{2}(\mathrm{DPDPU})\right]\left(\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{0.5}{ }^{\prime}$, Journal of Coordination Chemistry, 59: 14, 1609-1614 ${ }^{2}$
To link to this Article: DOI: 10.1080/00958970600577494
URL: http://dx.doi.org/10.1080/00958970600577494

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

# Syntheses and structures of two new uranyl complexes $\left[\mathrm{UO}_{2}(\mathrm{DPDPU})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right)$ and $\left[\mathrm{UO}_{2}(\mathrm{PMBP})_{2}(\mathrm{DPDPU})\right]\left(\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{0.5}$ 

LI-MING ZHU $\dagger$, SHOU-WU WANG $\dagger$, BAO-LONG LI* ${ }^{*} \dagger$, JIAN-RONG JIN $\dagger$ and YONG ZHANG $\dagger$<br>$\dagger$ College of Chemistry and Chemical Engineering, Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou University, Suzhou 215123, P.R. China<br>$\ddagger$ State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P.R. China

(Received 24 October 2005; revised 16 November 2005; in final form 16 November 2005)


#### Abstract

Two new uranyl complexes $\left[\mathrm{UO}_{2}(\mathrm{DPDPU})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right)$ (1) and $\left[\mathrm{UO}_{2}(\mathrm{PMBP})_{2}\right.$ (DPDPU) $]\left(\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{0.5} \quad$ (2), $\quad\left(\right.$ DPDPU $=N, N^{\prime}$-dipropyl- $N, N^{\prime}$-diphenylurea, HPMBP $=$ 1-phenyl-3-methyl-4-benzoyl-pyrazolone-5) were synthesized and characterized. The coordination geometry of the uranyl atom in $\mathbf{1}$ is distorted hexagonal bipyramidal, coordinated by two oxygen atoms of two DPDPU molecules and four oxygen atoms of two bidentate nitrate groups. The coordination geometry of the uranyl atom in $\mathbf{2}$ is distorted pentagonal bipyramidal, coordinated by one oxygen atom of one DPDPU molecule and four oxygen atoms of two chelating PMBP molecules.


Keywords: Crystal structure; Uranyl nitrate; Uranyl bis( $\beta$-diketonate); Substituted urea

## 1. Introduction

Tributyl phosphate (TBP) has been widely used as the extraction reagent in $\mathrm{U}-\mathrm{Th}$ fuel to separate uranium from thorium. But dibutyl phosphate (DBP) and butyl phosphate (MBP), the radiolytic products of TBP, exhibit some coordination ability to fission elements, such as Zr and Nb . Substitutes for TBP have been studied for several decades $[1-4]$. We are interested in studying the behavior of new extractants and the crystal structures of the extracted compounds [5-11]. Substituted urea compounds are effective extractants [9-11]; 1-phenyl-3-methyl-4-benzoyl-pyrazolone-5 has been widely studied as extractant and chelating agent of metal ions [12, 13]. In this work, two new uranyl complexes $\left[\mathrm{UO}_{2}(\mathrm{DPDPU})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right)(\mathbf{1})$ and $\left[\mathrm{UO}_{2}(\mathrm{PMBP})_{2}\right.$ (DPDPU)] $\left(\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{0.5}$ (2), (DPDBU $=N, N^{\prime}$-dipropyl- $N, N^{\prime}$-diphenylurea, HPMBP

[^0]

DPDPU


HPMBP

Scheme 1. Structures of the ligands.
= 1-phenyl-3-methyl-4-benzoyl-pyrazolone-5) were synthesized and characterized by using DPDPU and HPMBP (scheme 1).

## 2. Experimental

### 2.1. Materials and physical measurements

All reagents were analytical grade and used without further purification. $\mathrm{UO}_{2}(\mathrm{PMBP})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ was prepared according to the reported method [14]. Elemental analyses for $\mathrm{C}, \mathrm{H}$ and N were performed on a Perkin-Elmer 240 C analyser. IR spectra were obtained for KBr pellets on a Nicolet 170SX FT-IR spectrophotometer in the $4000-400 \mathrm{~cm}^{-1}$ region.

### 2.2. Synthesis of $\left[\mathrm{UO}_{2}(\mathrm{DPDPU})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right)$ (1)

A 10 mL solution of $\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.201 \mathrm{~g}, 0.2 \mathrm{mmol})$ in $3 \mathrm{M} \mathrm{HNO}_{3}$ was extracted by $N, N^{\prime}$-dipropyl- $N, N^{\prime}$-diphenylurea (DPDPU) $(0.149 \mathrm{~g}, 0.5 \mathrm{mmol})$ dissolved in 20 mL toluene at room temperature until the organic phase was saturated. The organic phase was separated and filtered. The filtrate was allowed to stand in the dark at room temperature. Yellow crystals suitable for X-ray diffraction analysis were obtained one week later. Found: C, 49.76; H, 4.96; N, 8.16. Calcd for $\mathrm{C}_{45} \mathrm{H}_{56} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{U}$ (1): C, 50.09; $\mathrm{H}, 5.23$; N, $7.79 \%$. Main IR absorption bands ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 1548vs, 1484vs, 1432s, $1382 \mathrm{~s}, 1269 \mathrm{~s}, 1144 \mathrm{w}, 1074 \mathrm{w}, 1025 \mathrm{~m}, 930 \mathrm{~m}, 743 \mathrm{~m}, 696 \mathrm{~m}, 568 \mathrm{w}$ and $463 \mathrm{mcm}^{-1}$.

### 2.3. Synthesis of $\left[\mathrm{UO}_{2}(\mathrm{PMBP})_{2}(\right.$ DPDPU $\left.)\right]\left(\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{0.5}$ (2)

A solution of DPDPU $(0.070 \mathrm{~g}, 0.2 \mathrm{mmol})$ in 10 mL 1,4-dimethylbenzene was added to a solution of $\mathrm{UO}_{2}(\mathrm{PMBP})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.172 \mathrm{~g}, 0.2 \mathrm{mmol})$ in 10 mL 1,4-dimethylbenzene and stirred for 20 min . The mixture was filtered and the filtrate was allowed to stand in the dark at room temperature. Orange crystals were obtained after two weeks. Found: C, 58.17; H, 4.65; N, 7.08. Calcd for $\mathrm{C}_{57} \mathrm{H}_{55} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{U}$ (1): C, 58.31; H, 4.72; $\mathrm{N}, 7.16 \%$. Main IR absorption bands ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 1598s, $1562 \mathrm{vs}, 1471 \mathrm{vs}, 1425 \mathrm{~s}$, $1379 \mathrm{~m}, 1296 \mathrm{w}, 1234 \mathrm{w}, 1155 \mathrm{~m}, 1058 \mathrm{vs}, 949 \mathrm{w}, 919 \mathrm{~m}, 833 \mathrm{~m}, 833 \mathrm{w}, 756 \mathrm{~m}, 694 \mathrm{~m}, 656 \mathrm{w}$, $609 \mathrm{~m}, 472 \mathrm{~s}$ and $417 \mathrm{scm}^{-1}$.

Table 1. Crystallographic data for $\mathbf{1}$ and 2.

| Empirical formula | $\mathrm{C}_{45} \mathrm{H}_{56} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{U}$ | $\mathrm{C}_{57} \mathrm{H}_{55} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{U}$ |
| :---: | :---: | :---: |
| Formula weight | 1078.99 | 1174.10 |
| Temperature (K) | 193(2) | 193(2) |
| Wavelength (A) | 0.71073 | 0.71073 |
| Crystal system | Triclinic | Triclinic |
| Space group | $P_{1}$ | $P^{\overline{1}}$ |
| $a$ (A) | 9.692(2) | 10.3280(8) |
| $b$ (A) | 9.735(2) | 13.2320(11) |
| $c$ ( $\AA$ ) | 13.398(3) | 19.9762(15) |
|  | 73.394(15) | 71.895(5) |
| $\beta\left({ }^{\circ}\right)$ | 74.767(17) | 83.801(7) |
|  | 88.32(2) | 83.357(7) |
| $V\left(\AA^{3}\right)$ | 1167.4(4) | 2569.9(4) |
| Z | 1 | 2 |
| $F(000)$ | 540 | 1174 |
| $\rho\left(\mathrm{g} \mathrm{cm}^{-3}\right)$ | 1.535 | 1.517 |
| $\mu\left(\mathrm{mm}^{-1}\right)$ | 3.537 | 3.217 |
| Crystal size ( $\mathrm{mm}^{3}$ ) | $0.30 \times 0.20 \times 0.12$ | $0.45 \times 0.42 \times 0.13$ |
| $\theta$ range for data collection ( ${ }^{\circ}$ ) | 3.01-25.33 | 3.01-25.35 |
| Index ranges | $\begin{aligned} & -11 \leq h \leq 11,-11 \leq k \leq 11 \\ & -14 \leq l \leq 16 \end{aligned}$ | $\begin{aligned} & -12 \leq h \leq 11,-15 \leq k \leq 15, \\ & -24 \leq l \leq 24 \end{aligned}$ |
| Refinement method | Full-matrix least-squares on $F^{2}$ | Full-matrix least-squares on $F^{2}$ |
| Independent reflections | $4238[R(\mathrm{int})=0.0478]$ | $9336[R(\mathrm{int})=0.0293]$ |
| Parameter | 305 | 641 |
| Goodness of fit $S$ | 1.011 | 1.042 |
| Final $R_{1}$ and $w R_{2}[I>2 \sigma(I)]$ | 0.0365, 0.0704 | 0.0292, 0.0684 |
| $R_{1}$ and $w R_{2}$ indices (all data) | 0.0381, 0.0715 | 0.0327, 0.0703 |
| Largest diff. peak and hole (e $\AA^{-3}$ ) | 0.913 and -2.241 | 1.639 and -1.210 |

### 2.4. Crystal structure determination

The single crystals of $\mathbf{1}$ and $\mathbf{2}$ with approximate dimensions $0.30 \times 0.20 \times 0.12$ and $0.45 \times 0.42 \times 0.13 \mathrm{~mm}^{3}$ were selected for lattice parameter determination and collection of intensity data using a Rigaku Mercury CCD diffractometer with graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$. Intensities were collected by the $\omega$ scan technique. The structures were solved by direct methods and refined with full-matrix least-squares technique (SHELXTL-97) [15]. The positions of hydrogen atoms were determined with theoretical calculation except that the hydrogen atoms of the disordered toluene were not located. The parameters of the crystal data collection and refinement of $\mathbf{1}$ and $\mathbf{2}$ are given in table 1 . Selected bond lengths and bond angles of $\mathbf{1}$ and $\mathbf{2}$ are shown in table 2 .

## 3. Results and discussion

The IR absorption band at $930 \mathrm{~cm}^{-1}$ in $\mathbf{1}$ is assigned to the asymmetric stretching band ( $v_{\text {asym }}$ ) of $\mathrm{UO}_{2}^{2+}$. The absorption bands at $1484,1269,1025$ and $743 \mathrm{~cm}^{-1}$ are attributed to $\mathrm{NO}_{3}^{-}[16,17]$. The $\mathrm{C}=\mathrm{O}$ absorption band of free DPDPU ligand is at $1656 \mathrm{~cm}^{-1}$ but changes to $1548 \mathrm{~cm}^{-1}$ for complex $\mathbf{1}$. The asymmetric stretching band ( $\nu_{\text {asym }}$ ) of $\mathrm{UO}_{2}^{2+}$ of $\mathbf{2}$ is at $919 \mathrm{~cm}^{-1}$. The $\mathrm{C}=\mathrm{O}$ absorption band of free HPMBP at $1640 \mathrm{~cm}^{-1}$ changes to $1598 \mathrm{~cm}^{-1}$ for complex 2 [12]. The absorption at $1562 \mathrm{~cm}^{-1}$ is attributed to the $\mathrm{C}=\mathrm{O}$

Table 2. Selected bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ for $\mathbf{1}$ and 2.

| $\mathbf{1}$ |  |  |  |
| :--- | ---: | :--- | ---: |
| $\mathrm{U}(1)-\mathrm{O}(2)$ | $1.762(3)$ | $\mathrm{U}(1)-\mathrm{O}(1)$ | $2.361(3)$ |
| $\mathrm{U}(1)-\mathrm{O}(3)$ | $2.515(3)$ | $\mathrm{U}(1)-\mathrm{O}(4)$ | $50.518(3)$ |
| $\mathrm{O}(1)-\mathrm{U}(1)-\mathrm{O}(3)$ | $64.94(10)$ | $\mathrm{O}(3)-\mathrm{U}(1)-\mathrm{O}(4)$ | $89.29(12)$ |
| $\mathrm{O}(1)-\mathrm{U}(1)-\mathrm{O}(4 \mathrm{~A})$ | $64.66(10)$ | $\mathrm{O}(2)-\mathrm{U}(1)-\mathrm{O}(1)$ | $87.16(12)$ |
| $\mathrm{O}(2)-\mathrm{U}(1)-\mathrm{O}(3)$ | $90.71(12)$ | $\mathrm{O}(2)-\mathrm{U}(1)-\mathrm{O}(4)$ |  |
| $\mathbf{2}$ |  |  | $1.772(2)$ |
| $\mathrm{U}(1)-\mathrm{O}(1)$ | $1.771(2)$ | $\mathrm{U}(1)-\mathrm{O}(2)$ | $2.396(2)$ |
| $\mathrm{U}(1)-\mathrm{O}(3)$ | $2.342(2)$ | $\mathrm{U}(1)-\mathrm{O}(4)$ | $2.410(2)$ |
| $\mathrm{U}(1)-\mathrm{O}(5)$ | $2.367(2)$ | $\mathrm{U}(1)-\mathrm{O}(6)$ |  |
| $\mathrm{U}(1)-\mathrm{O}(7)$ | $2.378(2)$ |  | $71.25(8)$ |
| $\mathrm{O}(1)-\mathrm{U}(1)-\mathrm{O}(2)$ | $179.42(11)$ | $\mathrm{O}(3)-\mathrm{U}(1)-\mathrm{O}(4)$ | $71.72(8)$ |
| $\mathrm{O}(4)-\mathrm{U}(1)-\mathrm{O}(5)$ | $72.68(8)$ | $\mathrm{O}(5)-\mathrm{U}(1)-\mathrm{O}(6)$ | $73.67(8)$ |
| $\mathrm{O}(6)-\mathrm{U}(1)-\mathrm{O}(7)$ | $71.30(8)$ | $\mathrm{O}(7)-\mathrm{U}(1)-\mathrm{O}(3)$ | $86.89(10)$ |
| $\mathrm{O}(1)-\mathrm{U}(1)-\mathrm{O}(3)$ | $92.70(10)$ | $\mathrm{O}(1)-\mathrm{U}(1)-\mathrm{O}(4)$ | $89.29(10)$ |
| $\mathrm{O}(1)-\mathrm{U}(1)-\mathrm{O}(5)$ | $94.06(10)$ | $\mathrm{O}(2)-\mathrm{U}(1)-\mathrm{O}(1)-\mathrm{O}(3)$ | $87.89(10)$ |
| $\mathrm{O}(1)-\mathrm{U}(1)-\mathrm{O}(7)$ | $89.98(10)$ | $\mathrm{O}(2)-\mathrm{U}(1)-\mathrm{O}(5)$ | $85.49(10)$ |
| $\mathrm{O}(2)-\mathrm{U}(1)-\mathrm{O}(4)$ | $93.32(10)$ | $\mathrm{O}(2)-\mathrm{U}(1)-\mathrm{O}(7)$ | $90.16(10)$ |
| $\mathrm{O}(2)-\mathrm{U}(1)-\mathrm{O}(6)$ | $90.22(10)$ |  |  |

Symmetry code: $\mathrm{A}-x+2,-y,-z+2$.


Figure 1. Local coordination of $\mathrm{U}(\mathrm{VI})$ in $\mathbf{1}$ with $30 \%$ thermal ellipsoids.
absorption of the coordinated DPDPU ligand. These results are confirmed by the X-ray crystal structures of complexes $\mathbf{1}$ and 2.

X-ray diffraction analysis shows that $\mathbf{1}$ contains coordinated uranyl $\left[\mathrm{UO}_{2}\right.$ (DPDPU $)_{2}\left(\mathrm{NO}_{3}\right)_{2}$ ] and a disordered toluene molecule. Figure 1 shows the local coordination of the $U(V I)$ atom in $\mathbf{1}$. Each $U(V I)$ atom is situated at the center of symmetry. The coordination geometry of the $\mathrm{U}(\mathrm{VI})$ atom is distorted hexagonal bipyramidal. The equatorial plane is defined by two oxygen atoms $[\mathrm{U}(1)-\mathrm{O}(1)$ $2.361(3) \AA$ A from the carbonyl groups of two symmetry-related DPDPU ligands, and four oxygen atoms $[\mathrm{U}(1)-\mathrm{O}(3)=2.515(3) \AA],[\mathrm{U}(1)-\mathrm{O}(4)=2.518(3) \AA]$ from two symmetry-related bidentate nitrate groups, with the mean deviation of $0.0506 \AA$ from the plane. The U-O (DPDPU) bond lengths $[2.361(3) \AA$ ] are much shorter than the $\mathrm{U}-\mathrm{O}$ (nitrate) bond lengths [2.515(3) to 2.518 (3) A$]$.


Figure 2. Local coordination of $\mathrm{U}(\mathrm{VI})$ in $\mathbf{2}$ with $30 \%$ thermal ellipsoids.

The axial positions are occupied by two oxygen atoms $[\mathrm{U}(1)-\mathrm{O}(2)=1.762(3) \AA$ ) of two symmetry-related oxygen ligands. This coordination geometry is the typical of uranyl nitrate complexes and the same as found in $\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ [18], [ $\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}\right)_{2}$ ] [5], $\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}\left[\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CONC}_{8} \mathrm{H}_{17}\right]_{2}$ [6], $\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}$ $\left[\mathrm{PhN}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{C}(\mathrm{O})\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{NPh}\right]_{2}$ [9], $\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}\left[\mathrm{PhN}\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathrm{O})\left(\mathrm{CH}_{3}\right) \mathrm{NPh}\right]_{2}$ [10]. The average bond lengths for U-O (uranyl) [1.762(3) Å], U-O (DPDPU) [2.361 (3) A] and $\mathrm{U}-\mathrm{O}$ (nitrate) $[2.517(3) \AA$ ] agree well with the literature complexes $[5,6,9,10]$.

X-ray diffraction analysis shows that $\mathbf{2}$ contains coordinated uranyl $\left[\mathrm{UO}_{2}(\mathrm{PMBP})_{2}(\right.$ DPDPU $\left.)\right]$ and 1,4-dimethylbenzene (Figure 2). The uranium atom in 2 is surrounded by seven oxygen atoms in a distorted pentagonal bipyramidal geometry. The four oxygen atoms $[\mathrm{U}(1)-\mathrm{O}(3)=2.342(2) \AA, \mathrm{U}(1)-\mathrm{O}(4)=2.396(2) \AA, \mathrm{U}(1)-\mathrm{O}(5)=$ $2.367(2) \AA, \mathrm{U}(1)-\mathrm{O}(6)=2.410(2) \AA]$ of two PMBP ligands and one oxygen $[\mathrm{U}(1)-\mathrm{O}(7)=$ 2.378(2) A] of DPDPU form a planar pentagon and these oxygen atoms are coplanar with mean deviation of $0.0811 \AA$ from the plane. The axial positions are occupied by two oxygen atom ligands $[\mathrm{U}(1)-\mathrm{O}(1)=1.771(2) \AA, \quad \mathrm{U}(1)-\mathrm{O}(2)=$ $1.772(2) \AA$ A. This coordination geometry is similar to those in $\left[\mathrm{UO}_{2}(\mathrm{PMBP})_{2}(\mathrm{DMSO})\right]$ $(\mathrm{DMSO}=$ dimethylsulfoxide $) \quad[19], \quad\left[\mathrm{UO}_{2}(\mathrm{DBM})_{2}(\mathrm{DPPMO})\right]$ and $\quad\left[\left\{\mathrm{UO}_{2}(\mathrm{DBM})_{2}\right\}_{2}\right.$ (DPPMO)] $(H D B M=$ dibenzoylmethane, $D P P M O=\operatorname{bis}($ diphenylphosphino)methane dioxide) [20]. The observed bond lengths of $\mathrm{U}-\mathrm{O}$ (PMBP) are in the range of 2.342(2)
to $2.410(2) \AA$ in $\mathbf{1}$, compared to the values [from $2.325(7)$ to $2.403(6) \AA$ ] in $\left[\mathrm{UO}_{2}(\mathrm{PMBP})_{2}(\mathrm{DMSO})\right][19]$. The average $\mathrm{U}-\mathrm{O}(\mathrm{PMBP})$ bond lengths are $2.379(2) \AA$ in 1 and $2.367(7) \AA$ in $\left[\mathrm{UO}_{2}(\mathrm{PMBP})_{2}(\mathrm{DMSO})\right]$. The bond length of $\mathrm{U}-\mathrm{O}$ (DPDPU) in $\mathbf{1}$ is $2.378(2) \AA$, similar to the value of $\mathrm{U}-\mathrm{O}$ (DMSO) $(2.378(7) \AA$ ) in $\left[\mathrm{UO}_{2}(\mathrm{PMBP})_{2}(\mathrm{DMSO})\right]$. The $\mathrm{U}-\mathrm{O}$ average bond lengths in the axial positions are $1.772(2) \AA$ in $\mathbf{1}$ and $1.750(8) \AA$ in $\left[\mathrm{UO}_{2}(\mathrm{PMBP})_{2}(\mathrm{DMSO})\right]$, much shorter than the $\mathrm{U}-\mathrm{O}$ average bond lengths in the plane $[2.379(2) \AA$ in $\mathbf{1}$ and $2.369(7) \AA$ in $\left.\left[\mathrm{UO}_{2}(\mathrm{PMBP})_{2}(\mathrm{DMSO})\right]\right]$ [19].

When $\left[\mathrm{UO}_{2}(\mathrm{PMBP})_{2}(\right.$ DPDPU $\left.)\right]\left(\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{0.5} \quad$ (2) is compared with $\left[\mathrm{UO}_{2}(\mathrm{DPDPU})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right)$ (1), the two larger PMBP ligand molecules in $\mathbf{2}$ instead of two nitrate ions in $\mathbf{1}$ resulted in the uranyl in 2 only coordinated by one DPDPU ligand molecule while the uranyl in $\mathbf{1}$ is coordinated by two DPDPU molecules. The coordination geometry of the $\mathrm{U}(\mathrm{VI})$ atom is a distorted hexagonal bipyramid in $\mathbf{1}$ and a distorted pentagonal bipyramid geometry in 2.

## Supplementary material

Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (CCDC) (E-mail: deposit@ccdc.cam.ac.uk) as supplementary materials and the CCDC reference numbers are 286404 and 286405.

## Acknowledgements

This work was supported by the Funds of Key Laboratory of Organic Synthesis of Jiangsu Province and the Funds of State Key Laboratory of Coordination Chemistry, P.R. China.

## References

[1] T.H. Siddall. J. Phy. Chem., 64, 1863 (1960).
[2] C. Musikas. Sep. Sci. Technol., 22, 1211 (1988).
[3] G.X. Sun, J.T. Han, J.K. Zhu, B.R. Bao, S.X. Sun. Chinese J. Inorg. Chem., 15, 191 (1999).
[4] Y.D. Jin, W.R. Wu, W.J. Chen. Chinese J. Nuclear and Radiochemistry, 23, 13 (2001).
[5] Z.B. Cao, T.L. Qi, L.M. Zhu, D.C. Zhang, R. Zhou, K.B. Yu. Acta Cryst., C55, 1270 (1999).
[6] L.M. Zhu, Z.B. Cao, B.L. Li, Y.L. Wang. Chinese J. Struct. Chem., 21, 501 (2002).
[7] L.M. Zhu, X. Zhu, Y.P. Zhang, B.L. Li, Z.B. Cao, Y. Zhang. J. Mol. Struct., 657, 375 (2003).
[8] L.M. Zhu, B.L. Li, L. Chen, Z.B. Cao. Chinese Chem. Res. App., 16, 276 (2004).
[9] L.M. Zhu, Z.B. Cao, B.L. Li, A.M. Luo, K.B. Yu. Chinese J. Inorg. Chem., 18, 924 (2002).
[10] L.M. Zhu, B.L. Li, Z.B. Cao, Y. Zhang. Chinese J. Struct. Chem., 22, 521 (2003).
[11] L.M. Zhu, B.L. Li, Z.B. Cao, L.B. Xu. Chinese Chem. Res. App., 16, 261 (2004).
[12] E.C. Okafor. Spectrochim. Acta Part A, 37, 945 (1981).
[13] D. Barkat, M. Kameche, A. Tayeb, et al. Phys. Chem. Liq., 42, 53 (2004).
[14] M.S. Subramanian, A.K. Sabnis, M.S. Nagar. Synth. React. Inorg. Met.-Org. Chem., 13, 1067 (1983).
[15] G.M. Sheldrick. SHELX-97, University of Göttingen, Germany (1997).
[16] J.B. Allpress, A.N. Hambly. Aust. J. Chem., 12, 569 (1959).
[17] K.W. Bagnall, M.W. Wakerley. J. Inorg. Nucl. Chem., 37, 329 (1975).
[18] D. Hall, A.D. Rac, T.N. Waters. Acta Cryst., 24, 389 (1965).
[19] R.R. Ryan, G.D. Jarvinen. Acta Cryst., C43, 1295 (1987).
[20] S. Kannan, N. Rajalakshmi, K.V. Chetty, V. Venugopal, M.C.B. Drew. Polyhedron, 23, 1527 (2004).


[^0]:    *Corresponding author. Email: blli1965@pub.sz.jsinfo.net

